
Unsteady Flow Volumes

Barry G. Becker*
David A. Lane**
Nelson L. Max*

*Lawrence Livermore National Laboratory
P.O. Box 808 / L-301
Livermore, CA 94551

(becker1@llnl.gov, max2@llnl.gov)

**Computer Sciences Corporation
NASA Ames Research Center

M/S T27A-2
Moffett Field, CA 94035

(lane@nas.nasa.gov)

Abstract

Flow volumes [1] are extended for use in unsteady (time-
dependent) flows. The resulting unsteady flow volumes are
the 3 dimensional analog of streaklines. There are few exam-
ples where methods other than particle tracing have been
used to visualize time varying flows. Since particle paths can
become convoluted in time there are additional consider-
ations to be made when extending any visualization tech-
nique to unsteady flows. We will present some solutions to
the problems which occur in subdivision, rendering, and sys-
tem design. We will apply the unsteady flow volumes to a va-
riety of field types including moving multi-zoned curvilinear
grids.

Introduction

Visualization of steady flow is often based on streamlines.
A streamline is a curve which is everywhere tangent to a
vector field at a moment in time. For unsteady flows one may
use pathlines, timelines or streaklines as a basis for dynamic
visualization techniques. A pathline shows the trajectory of a
particle released from a given location. Timelines are rakes
of connected points that have all been released at the same
time. Streaklines are the curves formed by joining the posi-
tions, at an instant in time, of all the particles which have
been released previously from a single location. The un-
steady flow volumes presented in this paper follow the anal-
ogy of streaklines.

There are a variety of standard methods used to visualize
flow fields, many of which can be extended to unsteady
flows in a straightforward manner. Hedgehogs, contour sur-

faces of constant velocity magnitude, and particle traces
are good examples because they consist of sets of inde-
pendent graphics primitives.

Streamlines, ribbons, and volumes provide increas-
ingly informative representations of a flow. None of
them, however, is trivial to extend to unsteady fields be-
cause of the dynamic relationship between vertices.
There is no guarantee that consecutive vertices on the
same streakline will remain within a given distance
apart from one time step to another. In static flow fields,
the vertices do not move so this problem does not arise.

Multi-zoned curvilinear grids are commonly used in
computational fluid dynamics (CFD) simulations. These
grids may have rigid body motions. Lane’s [2] particle
tracing package provides for advection in these types of
flows. We will make use of his UFAT library to advect
the vertices of the unsteady flow volume when in a
multi-zoned or moving curvilinear grid.

There are many methods which give good represen-
tations of static fields but have never been applied to un-
steady flows or non-regular grids. Stream surfaces [3],
cloud tracing [4], virtual smoke[5], surface particles [6],
and spot noise [7] are examples of these. Spot noise may
be a successful technique for unsteady flows because it
does not try to maintain connected primitives.

Techniques which use advection may benefit from
calling UFAT [2] if they are to be applied to multi-zoned
curvilinear grids which may contain moving grids. For
methods like texture splats [8], which do not rely on par-
ticle advection, unusual grids must be handled in anoth-
er way.

There are few examples where visualization other
than particle tracing has been successfully applied to un-

Roger A. Crawfis
Appeared in "Proceedings Visualization '95", Atlanta, GA. (October 1995), IEEE Computer Society Press (also available as UCRL-JC-120492 Lawrence Livermore National Laboratory).

steady flows. Crawfis and Max provide an example by ad-
vecting cloud textures on contours of percent cloudiness in
[9]. Unfortunately their method required looping through
every time step for each frame of animation. Even streak-
lines are not common because there is a tendency for adja-
cent particles to become too far apart. This implies that
smooth lines may quickly become jagged.

Steady Flow Volumes

A flow volume is the 3D equivalent of a streamline, and
consists of the union of the streamlines that start on a 2D
generating polygon [1]. This volume is divided up into a
set of semitransparent tetrahedra, which are volume ren-
dered in hardware in a way derived from the method of
Shirley and Tuchmann [10]. The tetrahedra are arranged to
triangulate the slabs between the layers of vertices in suc-
cessive time steps. Therefore construction in a steady flow
entails adding slabs of extra tetrahedra to the leading sur-
face of the volume for each new time step (see figure 1). A
curvature based method of adaptive subdivision was used
to increase resolution if the flow diverged too much.

Figure 1

If the flow volume is monochrome no sorting is neces-
sary. Often it is desirable for each vertex in the flow vol-
ume to have color and opacity assigned to it according to
an independent scalar quantity. In this case the sorting and
hardware assisted rendering described by Stein [11] is
used. The smoke may be combined with solid geometry
since opaque polygons are rendered into the z-buffer first.

There is an option to divide the opacity by the tetrahe-
dron’s volume. This will make regions where the smoke is
compressed more opaque because the relative volume will
be smaller.

Instead of shortening the time step (dt) until a desired
accuracy is reached, it is better to use an improved integra-
tion scheme. This will reduce the number of graphical

primitives needed to represent the same amount of accura-
cy. Besides Euler and Runge-Kutta (RK) methods, adap-
tive methods try to modify each successive integration
step so that the error is kept constant. The method de-
scribed in Presset al [12] either lengthens or shortens the
time step to accomplish this. Figure 2 shows how this can
improve results for a 4th order RK scheme. LetPn be the
current position at tn andPn+1 be the next position at tn+1.
The following pseudo code finds the next positionPn+1
and calculates thedt to be used in the next time increment
tn+1, that will keep the error within some desired tolerance
ε.

V= velocity(Pn)
Pmid = RungeKutta(Pn, 0.5dt)
Pfull = RungeKutta(Pn, dt)
Vmid = velocity(Pmid)
Pn+1 = RungeKutta(Pmid, 0.5dt, Vmid)
error = |Pn+1 - Pfull |
if (error >ε)

dt =0.9dt (| ε / error|)SHRINK

else
dt = 0.9dt (| ε / error |)GROW

where SHRINK is 1/2 or 1/4 for a second or fourth order
RK scheme respectively, and GROW is 1/3 or 1/5. The
derivation of these exponents is described in [12]. This
adaptive scheme requires 11 rather than the 8 function
evaluations used if we did just the two half steps. The fac-
tor of 0.9 keeps the change indt conservative.

Figure 2. a) Euler, b) exact, c) 2nd order RK, d) adaptive 2nd

order RK, e) 4th order RK, f) adaptive 4th order RK.

Unsteady Flow Volumes

Flow volumes for unsteady flows correspond to the
union of streaklines that start on the generating polygon.
The volume evolves in time by moving “sideways” as the
streaklines shift with the varying flow, as well as by add-
ing tetrahedra at the generating polygon. This makes adap-
tive subdivision far more difficult, as does the use of
adaptive time steps.

Aa b

c d

e f

Adaptive Subdivision

Unsteady flow fields present some unique problems for
visualizations with connected graphical primitives like
lines, ribbons, and volumes. The adaptive time integration
pseudo-code shown in the previous section can no longer
be applied because the whole flow constructed at each
time step needs to be advected, not just the last particle or
layer of particles.

Using the adaptive time integration just described for
advecting particles in unsteady flows would generate in-
termediate particle positions between the given time steps.
However, for visualization, the particle positions are dis-
played only at the given time steps. Hence, the adaptive
stepping described by Lane in [2] is used.

Another problem is the difficulty in extending the old
subdivision scheme of [1] or [13] to unsteady flows. Un-
like static flow volumes it is possible for adaptive subdivi-
sion to be required at any point along the existing flow
rather than at the flow front only. Also a provision for re-
versing the subdivision when it is no longer needed should
be included. The reason for this is that an area of the
smoke flow which needs subdivision at one time step may
not need it in subsequent ones. The static subdivision
method provides no way to subdivide the middle region
without adding new particles to the flow front. Those new
particles, if they are added, must come about by advection
from the first time step. It is now much more expensive to
maintain a list of midpoints over every segment in the
whole flow volume, as was done in [1] to decide when
subdivision was necessary.

There are several ways of performing adaptive subdivi-
sion. For static flow volumes, a test based on curvature or
edge length was used. This subdivision occurred only at
the flow front as advection progressed, not between layers
corresponding to adjacent time steps. Subdivision never
went beyond a maximum amount to prevent an exponen-
tial increase in the number of tetrahedra. Once that maxi-
mum was reached it was never reduced. In turbulent flows
it was common for the subdivision to reach its maximum
right away, and also to miss features right at the base since
the number of tetrahedra would never more than double
between successive layers. Hence, for unsteady and some
steady flows the amount of subdivision should be fixed at
the maximum from the start.

Besides cross-sectional subdivision there is also subdi-
vision in the direction of time to be considered. The space
between layers of particles should stay approximately con-
stant. In the steady state case we handled this using an
adaptive time step. Since this is no longer possible, the so-
lution we propose is to adaptively add or delete intermedi-
ate layers of vertices as necessary. If the average distance
among all corresponding points in adjacent levels is above
some tolerance, then we will insert a whole layer of verti-

ces at the midpoints between corresponding vertices of the
last two layers.

Figure 3. Adaptive insertion and deletion of particles on a
streakline.

There will now be two slabs where there was only one,
and the opacity of each new tetrahedral element will be
half the ones they replace. These new points will be ad-
vected from this point on. They do not lie on the true
streakline, since they were not advected from the first time
step, but they will be a far better approximation than never
letting the midpoint be advected. Similarly, if the average
distance between all paired points on adjacent levels is be-
low some tolerance then we delete that layer of points and
replace the two levels of tetrahedra with one having dou-
ble the opacity. The deleting of vertices may cause prob-
lems later if the remaining neighbors start to spread apart
again. Perhaps vertices should never be deleted since it is
impossible to determine the future behavior of the field.
Adding particles cannot decrease the accuracy, but it can
lead to prohibitively many vertices if deletion is not al-
lowed.

In an approach described by Shariffet. al. [14] whenev-
er resolution is lost due to stretching, time is returned to
the instant when the group of vertices were inserted and
new interpolated vertices are added. This is a time con-
suming, but completely accurate process. A similar idea
would be to do a complete trial run to determine in a pre-
process step where subdivision will be necessary. Then in
the actual run particles can be added from the beginning
using the hindsight provided by the trial run. This assumes
a batch mode of operation which is not always desirable.

Figure 3 illustrates our method applied to a section of a
streakline. A vertex is inserted at the midpoint of a seg-
ment which has exceeded the tolerance at time tn. A vertex
is deleted at time tn+1 when two adjacent segments be-
come too short. Figure 4 shows frames from an animation
in which a streakline with adaptively added and deleted
particles is compared to one using only original particles.
It is expected that this adaption scheme will work best as
long as the cross-sectional subdivision is not too detailed

tn+1

tn-1

tn

and the generating polygon is not too large. If the variation
of distances among vertex pairs in adjacent levels is too
large this method will be of little benefit. This becomes in-
creasingly likely as an unsteady flow volume matures, and
adjacent streaklines become independent. At that point the
importance of cross-sectional subdivision increases.

As an unsteady flow volume advances there is a strong
tendency for parts of it to dissipate. In these areas where
the particles become too far apart one might expect subdi-
vision to be crucial, but in fact it is less so because the vol-
umes are becoming larger and hence the smoke is
increasingly transparent. Although the tetrahedra are be-
coming large, their opacity contribution is diminished.
Similarly, places where vertices get crushed together will
be opaque and may be important, so small tetrahedra
should not necessarily be joined into larger ones.

A user of this technique should note that the accuracy
of its depiction of underlying physics degenerates over
time. Adaptively adding particles significantly slows this
degradation however.

Thin Tetrahedra

Inadequate subdivision will lead to long thin tetrahedra
which will show up prominently (see Figure 5a). The rea-
son for this is that the opacity of a tetrahedron is inversely
proportional to its volume. This problem is present in
steady flows, but compounded by unsteady ones.

There are times when tetrahedra will become stretched
out in one direction while staying thin in another. These
long thin tetrahedra can cause artifacts because their vol-
ume can be arbitrarily small. This stretching is common
when the flow splits around an object or when the tetrahe-
dron is near the grid surface. Tetrahedra joining stream
lines on either side of the object may actually pass through
it. They are dealt with by multiplying the volume by

if El/Es >tol . El is the longest edge,Es is the shortest, and
tol is the largest ratio permitted. This results in greatly re-
ducing the adverse effects of the degenerate tetrahedra by
reducing their opacity and hence their visibility (see Fig-
ure 5b).

Implementation

We created a suite of Explorer modules to generate
smoke in a variety of vector fields. Based on the kind of
mesh it receives, a Smoke module will create an instance
of the appropriate type of vector field. The vertices of the
flow volume are particles that maintain their positions

El
Es tol⋅()

with respect to time. There are different types of particles
for each type of vector field. If the field is unsteady then
the network becomes more complicated (see Figure 6) be-
cause the smoke module needs to read the next vector field
before each new advection step. Changing the step size,
amount of subdivision, or starting position will immedi-
ately cause the vector field to return to its first time step,
hence starting the flow over with the new parameter.
Changing the color or transparency will not restart the
flow. The flow will not advect until the advect button is
pressed. This allows the flow volume to be rotated or mov-
ing puffs with cyclically varying opacity to be enabled
while the motion in the unsteady flow is paused. The
“number of steps” slider marks the maximum number of
allowable levels in the flow. If the number of layers ex-
ceeds this maximum, either because of natural advection
or because too many layers are adaptively inserted, then
the flow will be truncated.

Figure 6. An Explorer map for generating unsteady flow vol-
umes. A new vector field is read in for every new advection step.

We created a hierarchy of C++ vector field classes (see
Figure 7). Through polymorphism we avoid rewriting or
copying most functions. All particles share a common in-
terface. The implementation of that interface varies greatly
depending on the type of particle, but the code which uses
particles (such as the routine which constructs the flow
volume) only calls functions defined for all the types of
particles.

Figure 7

Figure 8

Multiple grid vector fields, a subclass of the base vector
field, contain an array of pointers to vector fields of any
type. Dynamic vector fields, also a subclass of the base
vector field, contains pointers to the two vector fields
which are currently loaded into memory at the current
time. Those two fields may even have multiple grids. As
time moves forward the last field will be deleted and the
next one will be loaded in so that only fields representing
the current and last time steps reside in memory at any one
time. Each class of vector field has in its standard interface
virtual methods for sampling values. Any class of particle
can set its own physical position, copy itself, find a mid-
point between itself and another particle, and advect to a
new position. Figure 8 shows a structure for particles sim-
ilar to the one for vector fields.

A flow can be colored by any available independent
scalar variable like pressure or temperature. Coloring the
flow by time released is also a feature. Particles in dynam-
ic flows record the time they were released. This value
may be used to assign colors to vertices just as any other
scalar value which is present in the field. Coloring the flow
also provides an important depth cue not present in mono-
chrome smoke.

Results

We have used flow volumes to interactively explore a
wide range of data sets, and have created several interest-
ing animations. Figure 9 shows an unsteady flow volume
in a curvilinear vector field of simulated wind data over
Indonesia after 72 time steps (sampled over 3 days in Jan-
uary). The smoke is colored by its age. The animation
shows much more information. Figure 10 depicts a frame
from an animation showing the flow volume technique ap-
plied to an unsteady data set of a clipped delta wing with
oscillating flaps. The delta wing data set is composed of
four curvilinear grids consisting of a quarter of million
grid points. A total of 5,000 time steps per oscillation are
created in the numerical simulation. However, only every
50th time step is saved. In the animation, particles were re-
leased near the surface of the wing and an unsteady flow
volume is dynamically constructed. Finally Figure 11
shows an unsteady flow volume near a missile in flight.
The missile is in a curvilinear grid and consists of a half
million points.

After each advection step the scene may be interactive-
ly rotated. The actual advection requires reading in the
next field and advecting the entire flow volume and hence
is typically not interactive.

The time for constructing and displaying the flow vol-
ume at each step is proportional to the number of vertices,
while reading the next vector field at each step takes time
proportional to the number of sample points in the field. A
major performance bottleneck is in disk access. Except for
small problems, memory can hold only a few time steps si-
multaneously.

Images, animations, source code, and Explorer mod-
ules, are available on the Web at: http://www.llnl.gov/
graphics.

Future Work

We have only presented one possible way of represent-
ing unsteady flow volumes. Better adaptive subdivision
schemes should be examined. If part of the flow volume
touches a region which is outside the valid domain, it is
truncated at that point. A way to clip the volume without
truncating should be devised. Perhaps the best thing to do
is abandon meshes altogether in favor of pursuing splats.

UFAT saves the particles at each time step for playback
later. Flow volumes could benefit from a similar scheme.
The Explorer ReadGeom and WriteGeom modules would
have to be modified to recognize flow volume geometry.

Another goal is to explore unsteady vector fields using
the virtual wind tunnel created at NASA.

Acknowledgments

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under contract number W-7405-ENG-
48, with specific support from an internal “LDRD” re-
search grant. The second author would like to acknowl-
edge NASA for supporting portions of this work
performed under contract NAS 2-12961. We wish to thank
Roger Crawfis, Cliff Stein, and David Kenwright for their
many suggestions, Carl Hsieh for the missile data set, John
Zych for creating our Web page, and the IEEE computer
Society reviewers for comments which improved the pa-
per.

References

[1] Max, N., Becker, B. and Crawfis, R., (1993) “Flow
Volumes for Interactive Vector Field Visualization”, Pro-
ceedings of Visualization ’93, IEEE Computer Society
Press, Los Alamitos, CA, pp 19-23.

[2] Lane, D., (1994) “UFAT - a Particle Tracer for
Time-Dependent Flow Fields”,Proceedings of Visualiza-
tion ’94, IEEE Computer Society Press, Los Alamitos,
CA, pp 257-264.

[3] van Wijk, J., (1993) “Implicit Stream Surfaces”,
Proceedings of Visualization ’93, IEEE Computer Society
Press, Los Alamitos CA, pp 245-252.

[4] Ma, K. and Smith, P., (1993) “Cloud Tracing in
Convection Diffusion Systems”,Proceedings of Visualiza-
tion ’93, IEEE Computer Society Press, Los Alamitos,
CA, pp 253-260.

[5] Ma, K. and Smith, P., (1993) “Virtual Smoke: An
Interactive 3D Flow Visualization Technique”,Proceed-
ings of Visualization ’92, IEEE Computer Society Press,
Los Alamitos, CA, pp 46-53.

[6] van Wijk, J., (1993) “Rendering Surface Particles”,
IEEE CG&A, Vol. 13, No. 4, July, pp 18-24.

[7] Max, N., Crawfis, R. and Grant, C., (1994) “Visual-
ization of 3D Vector Fields near Contour Surfaces”,Pro-
ceedings of Visualization ’94, IEEE Computer Society
Press, Los Alamitos, CA, pp 248-255.

[8] Crawfis, R. (1992) “Texture Spats for 3D Scalar and
Vector Field Visualization”,Proceedings of Visualization
’92, IEEE Computer Society Press, Los Alamitos, CA, pp
261-266.

[9]Crawfis, R. and Max, N., (1992) “Direct Volume Vi-
sualization of Three-Dimensional Vector Fields”,Pro-
ceedings of the 1992 Workshop on Volume Visualization,
Kaufman and Lorensen (eds), ACM SIGGRAPH, NY, pp
55 - 60.

[10] Shirley, P. and Tuchman, A. (1990) “A Polygonal
Approach to Direct Volume Rendering”,Computer
Graphics, Vol. 24 No.5, pp 63-70.

[11] Stein, C., Becker, B., and Max, N., (1994) “Sorting
and Hardware Assisted Volume Rendering”,Symposium
on Volume Rendering, ACM Press, New York, NY, pp 83-
89.

[12] Press, William, et al., (1988)Numerical Recipes in
C, Cambridge University Press, Cambridge, pp574-578.

[13] Hultquist, J., (1992) “Constructing Stream Surfac-
es in Steady 3D Vector Fields”,Proceedings of Visualiza-
tion ‘92, IEEE Computer Society Press, Los Alamitos, CA
pp 171-178.

[14] Shariff, K., Pulliam, T. and Ottino, J., (1991) “A
Dynamical Systems Analysis of Kinematics in the Time-
Periodic Wake of a Circular Cylinder”,Lectures in Ap-
plied Mathematics, American Mathematics Society, Vol.
28, pp 613-646.

Figure 5a. No modification made to the opacity of thin tetrahedra.

Figure 4. The orange streakline has particles adaptively added and deleted
as determined by segment length. The purple streakline does not. The inset
shows an earlier frame in the animation.

Figure 5b. Opacity of unusually thin tetrahedra is reduced.

Figure 11. Unsteady flow volume near a missile in a curvilinear grid.

Figure 9. Dynamic flow volume colored by age in a curvilinear grid depicting
simulated winds in Indonesia.

Figure 10. Frame from an animation of unsteady flow on a
clipped delta wingan with oscillating flap. Data set has seven
curvilinear grids.

